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Analysis of the Dispersion Characteristic of
Slot Line with Thick Metal Coating

TOSHIHIDE KITAZAWA, YOSHIO HAYASHI, anp MICHIO SUZUKI, SENIOR MEMBER, 1EEE

Abstract—A theoretical method is presented for the analysis of the slot
line employing the network analytical methods of electromagnetic fields
and Galerkin’s procedure. The propagation constants for the dominant and
higher order mode as well as the effect of the metal-coating thickness on
the propagation constant and the characteristic impedance are obtained.
The numerical results are compared with other available data.

1. INTRODUCTION

HE DISPERSION characteristic of slot line has been

investigated by several authors [1]-[5]. Most of these
theories, however, have treated the propagation of the
dominant mode and have neglected the effect of the
metal-coating thickness. The propagation of the higher
order modes in slot line has been only approximately
investigated [5), and the effect of the metal-coating thick-
ness of slot line has been analyzed only for the propaga-
tion constant of the dominant mode [3].

This paper presents a method of analysis of the slot line
with metal-coating thickness greater than zero. This
method is an extention of the treatment in [3] using the
hybrid mode formulation, and hence, is capable of giving
the propagation constant for the higher order mode as
well as the effect of the metal-coating thickness on the
propagation constant and the characteristic impedance.
Our analysis employs the network analytical methods of
electromagnetic fields [6] for the derivation of integral
equations and Galerkin’s procedure [7] for the numerical
computation. The method itself is quite general and ap-
plies to a number of other structures, although the results
are not presented here.

II. FORMULATION OF INTEGRAL EQUATIONS

The cross section of slot line to be analyzed is shown in
Fig. 1. It consists of a slot in a metal coating on a
dielectric substrate. In the following formulation, it is
assumed that the metal coating and the dielectric sub-
strate are lossless.

First we express the transverse fields in the regions (1)
z>t, (2) t>z>0, (3) 0>z> —h, and (4) ~h>z by the
following Fourier integral:

A) regions (1), (3), and (4): —o<x<

EP |3 7 etm ViNesz) fO(as0) |,
HO | <i-w Xa;z)  g(asx)

i=1,3,4 (1)
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Fig. 1. Slot line. € is the dielectric constant.
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b) x| >W/2
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where B, is the propagation constant, x,, y,, and z, are the
x-, y-, and z-directed unit vectors, respectively, and £=1
and { =2 refer to the £ waves (H,=0) and the H waves
(E, =0), respectively. V{? and I{? are mode voltages and
currents, and f%, g, £, and g{® are vector mode
functions which satisfy boundary conditions at x= =
W /2(t>z>0) and x= * 00(z >t and z <0) and have the
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following orthonormal properties:

f w/2 gg’t‘)‘( x)'zo X.,}C)(an; x) dx= 692'871"

[7 82 (ols 02X e x) d= 8y 3(a— ') (6)

where 8, is Kronecker’s delta, 8(a—a’) Dirac’s § func-
tion and the symbol * signifies complex conjugate func-
tion. The longitudinal field components can be obtained
from the transverse fields according to

1
D) — 10}
EY =V (B xz)

) 1 )
HP=— V. (g, XE® 7
g oo (zox E) ™

€(,-) = &€
€

Substituting (1), (3), and (7) into Maxwell’s field equation
and applying the orthonormal properties of the vector
mode functions (6), we obtain the following transmission-
line equations:

where

(region (3))
(other regions).

v
d
a1
(1) /()
~EL e v
dz
af® and c{? are given by
KW

wet

a1

(8)

= wop,— a8 =wp,

08
e =we? f)=we®— K
Wity

KO = K, (region (2))
K, (other regions).

©)

The boundary conditions to be satisfied are expressed
as follows:

Dz=t; —W/2<x<W/2
E{V=E®=E, (10a)
HOY=H? (10b)
) z=0; ~W/2<x<W/2
EP=EP=E, (11a)
H®=H® (11b)
Nz=—h; —0<x<®
EQ=E® (122)
HP=H® (12b)

where E, and E, are the transverse electric fields at the
slot surfaces z =¢ and z =0, respectively.

Applying the continuity conditions (10a), (1la), and
(12) to the general solutions of the differential equations
(8), the mode voltages and currents in each region are
expressed as
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Vi (a; 2)= T{(a; 2|1) Voo ()

I (a;2) = Y{(a; 2]t) Vyo(@)
Vi a,:2) = TP (e, 210) Viu(@,) + TP @3 210) V()
IP(a,32) = Y@, 210) Vol @,) + Y (et,5210) Vi (a,)
V(a;z)= TP (a;2]0) V()
I (a; 2)= Y(a; 2(0) ¥ (@) (13)

where the Green’s functions 7” and Y{? are given in the
Appendix. The mode voltages at the slot surfaces I7¢a and
V,, are expressed in terms of the transverse electric fields
at the slot surfaces E, and E,:

Viz@)= [ df
Vya(a,)= f 8 (@ x') 2o X E a(x',y)el® d'.
-0

0)'(a;x’)-zoxb_’z(x’,y')e"ﬁ""dx’ (14)

The electromagnetic fields in each region can be obtained
by substituting (13) into (1) and (3). The application of the
remaining boundary conditions (10b) and (11b) leads us
to the integral equations on the electric fields at the slot
surfaces E, and Eb, and the unknown propagation con-
stant B,. E, and E, may be expressed in terms of B, as

(15)

E Z(x’, y)= { xoexz(x’) + yoeyz(x’) } e oY,
Thus the integral equations are expressed as follows:

1 po 1 o
30 ) (00— )i (@)

e
23

n =0
—cosech(x, t) ()} + (B B2+ bPa?)
-{ — coth(x,#)é,,(a,) + coth(x,1)é &,5(a, )}]

LS Ly
+ (B0~ BP) a8, () | e dex
2 =)
W ,Eo K2
+cosech(x,1)é ,(a,) } — (61> — b)
‘@, Bo{coth( K,)é,,(a,) —cosech(x, t)e"yb(a,,)} ]
2 & sin(a,x)
W n§0 K?
+coth(k,)é,,(a,)} + (6P BE + bPa?)
- {cosech(x, 1)é,,(a,) —coth(x, t)é'yb(a,,)}]

=5 | P = 60)abota(e)

+(bPB3+ bPa?)é (o) | e 7 dar

sm(a x) [

(B2 — b?) at, By { coth(k,2) €, (a,)

(16a)

S0S) 1 @2 4 b 2) [ —cothle,)éu(a)

(16b)

[ (6P — b)a, Bo{ — cosech(x, )&, ,(a,)

(16¢)
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7 ®
7 2

n=0

cos(a,x) .
— o [(6a}+ B B3){ — cosech(, )&, (o)
+coth(k,1)é,,(a,)} —j(B — b?)

-a,,Bo{cosech(lc 1)é,,(a,) —coth(k ,1)é,,(a, )}]

=;—Wl f_ — [(6Pa?+ 87 B)é ()

+ (b — 53))aﬁoey,,(a)]e—wda (16d)

where

BP= - 0
‘*’I‘JO

“e(n)

K, Whg

1- = tan(xh)
b§3)= bsl) Ko

1+ %tan(nh)

K,
1+ e,—KQ tan(Kh)
b§3) = bgl)

1- "‘c tan(Kh)

r™0

"0=VK2"‘°~’2€0 Ko "n=van—w250P'0

K =Vwpy— K*

(17)
and
éx (a)= f_p::;e; (x)e™™ dx’
aule)= [ e ) cos(a,x )
&, ()= f_u;:;eyi(x’)Sin(anx’)dx’, i=ab (18)

where x lies within the slot region |x| <W/2.

III.

In this section, the determinantal equation for the prop-
agation constant B, will be derived by applying Galerkin’s
method to the integral equations (16).

As a first step we expand the unknown slot fields e,
and e,,(i=a,b) in terms of known basis functions f,;, and
Joi as follows:

METHOD OF SOLUTION

N

exa(x)= 2 axkka(x)

N
eya(x) =j 2 aykfyk(x)
k=1

N
exb(x)= kgl bx xk(x)

N
(=7 2 buful0) (19)

where axy and b; « are unknown coefficients. After sub-

stituting (19) into (16), we multiply (16a) and (16¢c) by
Jym(x), and (16b) and (16d) by f,,(x), and then integrate
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them with respect to x. The resultant equations are writ-

ten as

- 00

+2V(a)f,(@)a]

2,” k= 2 ym(a)[ .]P(l)(a) k(a)

2 N
_Wz

||M8

1 K2 J’M(an) [ P(Z)(an)f;ck(an){COth(Knt)axk

—~cosech(k,1)b .} + QP (a,)fi(a,){ — coth(x,t)a,;
+cosech(xnt)bk}], m=12,---,N (202)
2,,k 1 f_wda 3@ RO s @),
+jPO(@)f () ay ]
-25 3 Li ROt
K=1n=1 K?
- { —coth(x,t)a,, + cosech(x, )b, }

+ PO(a,)f yk(a,,){coth(xnt)ayk

—cosech(x,)b}],  m=1,2---,N (20b)

23 5!
Wk=l

A GOl LR CHIACY

+{ —cosech(k, 1) a,, + coth(x, )b, } + QP (a,)f i (a,)
- {cosech(x, 1) a,, — coth(x,£)b, }]

=l § i d _1_ Rt -n(3) 4
2 2 [ da g B PO (@)

+0)fu()by ],  m=12,-- N (20c)
2 308 -
W 2, 2 gl @) RO ala)
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and
(o) = f_pz/zzf;k(x)e"“ dx
f;k(an) = f_ijZLk(x) cos(a,x)dx

Julen)= [ fusina)av. @)

/
w,
This set of simultaneous equations on the unknown axy
and b; « is homogeneous, and may be written in the

following matrix form:

[ G(By)] (23)

SLE &S

where [G(By)] is a square matrix of order 4N, and a,,
a,,b,, and b, are column matrices of the unknowns a,,,
> by and by, respectively.

For (23) to yield nontrivial solutions, the determinant of
the coefficient matrix [G(8y)] must be zero. This condi-
tion results in the determinantal equation for the propaga-
tion constant

det[ G(B,)|=0. 29

It remains only to select the basis functions f,(x) and
Su(x). It is desirable that the edge effect of slot fields
should be accounted for, and that the approximation to
the slot fields should be systematically improved by in-
creasing the number of basis functions. In view of these
requirements, the following families of functions are
adopted for basis functions:

Te(3)
(%)
fyk(x)= Uk(%)

where 7,(y) are Chebyshev’s polynomials of the first kind
and U,(y) are Chebyshev’s polynomials of the second
kind. The forms of these basis functions are shown in
Fig.2.

ka(x) =

(25)

IV. NUMERICAL COMPUTATIONS

The solutions of the determinantal equation (24) were
obtained using a digital computer. The integrals and
summations in matrix [G] can be evaluated with high
accuracy, because they converge extremely rapidly.

To investigate the computation accuracy of the method,
the propagation constants are computed assuming that the
thickness of the metal coating ¢ equals to zero. In such a
case ex,=ex,, hence a;k=b;k and [G] is a 2N X2N
matrix. In Table I, the computed results, using the dif-
ferent order of approximation, are shown and compared
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Fig. 2. The functional forms of basis functions.

with those by other method [1]. The rapid convergence is
obtained, which is the result of the adequate choice of the
basis functions (25).

In this arrangement, the coefficients of the basis func-
tions ax) were also calculated for N=4. For the dominant

mode, |¥2/a,|=71x1073 |%3/a,|=3.0x1072
|v4/a,|=13x107%, and a,=a,,=a,;=4a,=0. For the
first higher order mode, on the contrary, [x2/a,|=2.6,
143/a,|=86X1073, |%,/a,|=25%107> and a,=a,
=a,;=a,,=0. These results as well as those in Table I
show that retaining only one term (N =1) is sufficient for
the dominant mode, while two terms (N =2) are necessary
for the first higher order mode.

Fig. 3 shows the dispersion characteristics of slot line,
where the normalized propagation constants for the domi-
nant and the first higher order mode are reported. In the
computations, the first two basis functions (N=2) are
used for both the dominant and first higher order mode.
The numerical data are compared with the results of Cohn
[1], and the agreement is quite good.

Figs. 4 and 5 show the effect of the metal-coating
thickness on the propagation constant and the characteris-
tic impedance, respectively. The definition for characteris-
tic impedance is not uniquely specified due to the propa-
gation of the hybrid mode. The definition chosen here is

Vs
Z0=3p

(26)
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TABLEI

PROPAGATION CONSTANT By/wVeg g (N =THE NUMBER OF
Basis FuncTioNs)

N Dominant mode First higher-
order mode
1 2.2777 -
2 2,2777 1.6829
3 2,2776 1.6829
4 2.2776 1.6829
Cohn’s (1] 2.284 -
€= 9.6, h=1 (m), W=1 (mm), £ =25 (GHz)

24}
DOMINANT MODE
2.0}
o
a
l:
-l
3
1.6r FIRST HIGHER -
ORDER MODE
12}
1
| . . .
o 10 20 30 20

t{GHz)

Fig. 3. Normalized propagation constant for the dominant and first
higher order mode in slot line: ¢, =9.6, h=1 (mm), W=1 (mm), ¢=0.
Solid line represents present method and broken line represents
Cohn’s method [1].

where V, is the peak voltage defined by

fW/z E'a-xodx+f w2 E—b-xodx} 27)
—wy2 —-w/2
and P, is the average power flow along the y direction.
The first term of the basis functions is retained in these
computations (N = 1), therefore results for only the domi-
nant mode are presented. In this case |¥1/a,,|=0, there-
fore, the determinantal equation (24) becomes identical
with in [3, eq. 14] and Fig. 4 here is the same as in [3, fig.
2]. It is noted that the effect of the thickness of the metal
coating is the decrease in the propagation constant and
the characteristic impedance.

The typical computation time is about 16 s for the zero
thickness (N=2) and about 10 s for the finite-thickness
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Fig. 4. Normalized propagation constant.

€= 20.0

W=05(mm)

-

h=1.0(mm)
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Fig. 5. Characteristic impedance.

(N=1) using the electronic computer FACOM 230-75.

V. CONCLUSIONS

This paper described a hybrid mode analysis of the slot
line. The formulation uses the network analytical methods
of electromagnetic fields and numerical procedure is
based on Galerkin’s method. The propagation constants
for the dominant and first higher order mode as well as
the effect of the metal-coating thickness on the propaga-
tion constant and the characteristic impedance are com-
puted. It is found that the rapid convergence is obtained
because of the application of Galerkin’s method and the
adequate choice of the basis functions. Numerical results
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obtained for the dominant mode have been compared where

with other available data and are in good agreement. This — —
method itself is general and applicable to a number of ko= \/K Wty K, =YK ~wep
other structures, e.g., microstrip and coplanar waveguide.
) . K =\wep,— k* E=¢€€
Further results will be reported in near future. -0
y= ;% = —; 50
APPENDIX ! Ko WHto
Green’s functions 7® and Y are given by Y@= wey yPe K,
K ®
Tg(l)(a;z‘t)=e—xo(z—t) n o
(1) (1), —ro(z— ) = oL B —
YN a;z|t) =y e K Wik
sinhk |z —z'
T2l = Sl 27
sinhk, ¢
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