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Analysis of the Dispersion Characteristic of
Slot Line with Thick Metal Coating

TOSHIHIDE KITAZAWA, YOSHIO HAYASHI, AND MICHIO SUZUKI, SEN20Rl@bfEER, IEEJ?

Abstruct-A theoretical method is presented for the analysis of the slot
line employing the ne.hvork smdytical methods of electromagnetic fields

and Gakrkin’s procedure.’& propagation constants for the dombtant and
higher order mode as well ss the effect of tbe metal-coating tldekness on
the propagation constant and the ebsrseteristic @edance are ohined.

The numerical resadts sre cmnpamd with other avsilable W&

I. INTRODUCTION

T HE DISPERSION characteristic of slot line has been

investigated by several authors [1 ]–[5]. Most of these

theories, however, have treated the propagation of the

dominant mode and have neglected the effect of the

metal-coating thickness. The propagation of the higher

order modes in slot line has been only approximately

investigated [5], and the effect of the metal-coating thick-

ness of slot line has been analyzed only for the propaga-

tion constant of the dominant mode [3].

This paper presents a method of analysis of the slot line

with metal-coating thickness greater than zero. This

method is an extention of the treatment in [3] using the

hybrid mode formulation, and hence, is capable of giving

the propagation constant for the higher order mode as

well as the effect of the metal-coating thickness on the

propagation constant and the characteristic impedance.

Our analysis employs the network analytical methods of

electromagnetic fields [6] for the derivation of integral

equations and Galerkin’s procedure [7] for the numerical

computation. The method itself is quite general and ap-

plies to a number of other structures, although the results

are not presented here.

II. FORMULATION OF INTEGRAL EQUATIONS

The cross section of slot line to be analyzed is shown in

Fig. 1. It consists of a slot in a metal coating on a

dielectric substrate. In the following formulation, it is

assumed that the metal coating and the dielectric sub-

strate are lossless.

First we express the transverse fields in the regions (1)

z>t, (2) t>z>O, (3) O>z>–h, and (4) –h>z by the

following Fourier integral:

A) regions (l), (3), and (4): – co <x < m

i=l,3,4 (1)
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Fig. 1. Slot line. c is the dielectric constant.
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gf’J)= Zoxjjo) (B = 1,2),
K=-” (2)

B) region (2)

a) 1x1<W/2

@2)
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e ~ ~ ,-A%Y~(~)

(

vp(an; z) #)(an; x)

~$2)
e=l n=O IfZ)(an ; z) gfqan; x) )

(3)

where

c(n) =
{

l/ti , (n=O)

1, (n#O)

p)=+ r+{~O%cos(%~)-yojBosin(anx))
n

A’)= +
n i

+ {~0-W04%x) –YOCX.Sin(anx)}

2nr
an .—,

w
K“ = {aii . (4)

b) ]xl>W/2

E,=Ht=O (5)

where POis the propagation constant, XO,yo, and Z. are the
x-, y-, and z-directed unit vectors, respectively, and D= 1

and L =2 refer to the E waves (H== O) and the H waves

(E= = O), respectively. V~) and 1$> are mode voltages and

currents, and fin), g~”), fi), and g~) are vector mode

functions which satisfy boundary conditions at x=*

W/2(t>z >0) and x= ~ ~(z > t and z < ()) and have the
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following orthonormal properties:

~_:g[$)*(a’;x).zOxfi0)(a;x)dx=8tr8(a-a’) (6)

where ~tr is Kronecker’s delta, ~(a — a’) Dirac’s 8 func-

tion and the symbol * signifies complex conjugate func-

tion. The longitudinal field components can be obtained

from the transverse fields according to

@)= 1— v .(H:) x z“)
jot(i)

jyg) . -& V“(Z”XE?)
J(.J~o

(7)

where

{

CrCo (region (3))
C(O=

to (other regions).

Substituting (l), (3), and (7) into Maxwell’s field equation

and applying the orthonormal properties of the vector

mode functions (6), we obtain the following transmission-

line equations:

a!> and C$>are given by

(8)

(9)

{

~(i) = ‘.7 (region (2))

K, (other regions).

The boundary conditions to be satisfied are expressed

as follows:

l)z=t; – w/2<x<w/2

E$I) = @ =~g (lOa)

@)= @2) (lOb)

2) Z=O; – w/2<x<w/2

where ~a and ~~ are the transverse electric fields at the

slot surfaces z = t and z = O, respectively.

Applying the continuity conditions (lOa), (1 la), and

(12) to the general solutions of the differential equations

(8), the mode voltages and currents in each region are

expressed as

Vf’)(a; z) = T[l)(a; zlt) ~~(a)

lfl)(a; z) = Y[’)(a; Zlf) 7Ja)

V[qan ; z) = T$2)(an ,“Z]t) Vti(an) + Tf*ycYn; Zlo) Flb(an)

Zp(cln; z) = Yp(an; Zlt) Vb(an) + Yp(an; 40) ~J%)

vj3)(a; z)= Tf3~(a; z\o)Ffi(a)

1$3)(CX;z) = Yp(a; Zlo) Vu(a) (13)

(i) and Y~~ are given_in thewhere the Green’s functions Tl

Appendix. The mode voltages at the slot surfaces V@ and

VW are expressed in terms of the transverse electric fields

at the SIOt SUrfaCeS ~. and fib:

Fl;(a)= ~~ ~$”)”(a;~’)zox~ j(x’,~’)~poy’d~’ (14)
—w

‘!;(%) = ~W g[c)”(a.; X’)-ZOX ~;(x’,y’)d~”%’.
—w

The electromagnetic fields in each region can be obtained

by substituting (13) into (1) and (3). The application of the

remaining boundary conditions (lOb) and (1 lb) leads us

to the integral equations on the electric fields at the slot

surfaces ~0 and ~b, and the unknown propagation con-

stant PO. Ea and ~~ may be expressed in terms of B. as

Ea(x’,y’) = { xoeXg(x’) +yoeYj(x’) } e ‘JPOY’.
b

(15)

Thus the integral equations are expressed as follows:

;J.:’[( ,b(l) – by))apo:xa(a)

+ (b[l)~~+ bj’)a2)ZYa(a)] e–Juda

L 2 ‘in:;’)‘Wn=o ~
[j(b\z)- bj2))an@O{cOth(K. t)~X.(an)

– Cosech(fcn t)~xb(an) } + (b[2)fl# + b$z)a~)

.{ -coth(~.t)~Y.(a.) +coth(K#)~yb(a.)} ] (16a)

+J.:’[( b[l)az + by)p;)zxa(cl)

+ (b~])– bf’))a~oEy~(a) ]e-~axda

2 5 co:;’)
.—

w.=”
[(bfzb:+ bjz)fl:){ -coth(~.t);Xo(a.)

+ cosech(fc. t)~Xb(a.) } –j(b[z) – b~2))

@o{coth(@~ya(a.) – Cosech(K#)@Yb(an)} ] (16b)

~ ~0 ‘in~~x) [.Xb\2)- b$z))anflo{ -cosech(~nt)%=(an)
n- n

+ coth(K~ t)3Xb(a~) } + (b[z)~f + bjz)a:)

. {cosech(#.t)EY. (a.) -coth(Knt)EYb(an)} ]

=& J_;#( 1b(3) – b$s))apo:xb(a)

+ (b{3)~~ + bj3)a2)ij,~(a) ] e ‘ja da (16c)
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$ ~~o‘O:;”) them with” respect to x. The resultant equations are writ-
[(b~’)a~-f- b\2)/?~){ -cosech(~flf)?xa(a~) ten as

n

+coth(~.t)?X~(a.)} –.j(bl’) – b$z))

“a~~O{cosech(~.t);Y.(a.) – coth( ~nt):yb(a.)} ]

+ (lJ\3) – bj3J)a&?Yb(a) ] e-J’uda (16d)

where

b[z)= ~ b,$2)=– * 62(72)
Kn Cop.

and

Zji(a) = ~ ~~zeyi(~’)~a’d~’
—

‘xi(%) = f_~’~2 eXi(x’) cos(a.x’) dx’

w/2
‘yi(%) = j_ ~,2 yZe .(x’) sin(a~x’) dx’, i=a, b (18)

where x lies within the slot region \xl < W/2.

III. METHOD OF SOLUTION

In this section, the determinantal equation for the prop-

agation constant flo will be derived by applying Galerkin’s

method to the integral equations (16).

As a first step we expand the unknown slot fields eXi

and eYi(i = a, b) in terms of known basis functions fX~ and

$, as follows:

N
exa(x) = ~ axJxk(x)

k=l

eya(x) =j $ aY~Y~(x)
k=l

N

exb(x)= z %fxk(x)
k-l

eyb(x) =.j $ l+$k(x) (19)
k=l

where ay ~ and by k are unknown coefficients. After sub-

stituting (19) into (16), we multiply (16a) and (16c) by

$,~(x), and (16b) and (16d) by jX~(x), and then integrate

– cosech(~~ t)bXk} + Q ‘2)(a&(a.) { – cOth(K.~)ayk

+ cosech(qt)byk) ], m=l,2,. ... N (20a)

‘@l)(a) ~k(a)ayk]

=$,$,j, #m(an)[R(2)(%t)ik(%)

.{ - coth(~.t)~X. +cosech(K.t)bx.}

+ ~(2)(a~)~&(a~) { coth(~nt)ayk

– cosech(K~t)bY~} ], m=l,2, ”.. , N (20b)

s{ -cosech(K.t)aX,+ coth(Icnt)bXk} + Q(2)(~n).f,k(~~)

. {cosech(~Mt)aY~ -coth(~.t)byk}]

+ Q(3)(4jJ@byk], m=l,2,. ... N (20C)

- { -cOSeCh(Knt)Uxk + Coth(fqt)bxk} + ‘(’)(an)$k(an)

. {cosech(~~t)ayk – coth(~fl~)byk} ]

- (a)[ lt(’)(a)~k(~)bxk=2 k<,J_~da+i.L2%’ _

+j~(’)(djk(~)byk]> m=l,2, -.. ,N (20d)

where

~(i) = (bft) – bfj))#)~o

Q(i) = bji)~~ + b~)a(i)’

{

a., (region (2))R (i) ~ b(i)a(i)’ + b$)~~ , ~(i) =

a, (other regions)

(21)
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and

This set of

f;+) =J-_:;;;k(x)t@dx
Lc(an) = J_~j&(x)cOs(%x)~~

Jk(d= J_~~$(x)danx)dx. (22)

simultaneous equations on the unknown a~k

and b~~ is homogeneous, and may be written in the

following matrix form:

MCix
—

[ G(&)] ; =0
x

(23)

11<
where [ G( /3Q)] is a square matrix of order 4N, and ZX,

~,;’, and bY are column matrices of the unknowns aXz,

~k, b~k, and byk, respectively.
For (23) to yield nontrivial solutions, the determinant of

the coefficient matrix [ G( Do)] must be zero. This condi-

tion results in the determinantal equation for the propaga-

tion constant ~0

det[ G( PO)] =0. (24)

It remains only to select the basis functions jXk(x) and

~~(x). It is desirable that the edge effect of slot fields
should be accounted for, and that the approximation to

the slot fields should be systematically improved by in-

creasing the number of basis functions. In view of these

requirements, the following families of functions are

adopted for basis functions:

fxk(x)=

()$k(x) = uk # (25)

where Tk(y) are Chebyshev’s polynomials of the first kind

and U&Y) are Chebyshev’s polynomials of the second

kind. The forms of these basis functions are shown in

Fig. 2.

IV. NUMERICAL COMPUTATIONS

The solutions of the determinantal equation (24) were

obtained using a digital computer. The integrals and

summations in matrix [G] can be evaluated with high

accuracy, because they converge extremely rapidly.

To investigate the computation accuracy of the method,

the propagation constants are computed assuming that the

thickness of the metal coating t equals to zero. In such a

case e:. = e~~, hence a~~=b~~ and [G] is a 2NX2N

matrix. In Table I, the computed results, using the dif-

ferent order of approximation, are shown and compared

) 1

w-— ~
2 2

-2 -

fy, 1

w-—
2 2

Fig. 2. The functiomd forms of basis fanctions.

with those by other method [1]. The rapid convergence is

obtained, which is the result of the adequate choice of the

basis functions (25).

In this arrangement, the coefficients of the basis func-

tions a:~ were also calculated for N = 4. For the dominant

mode,’ 1~2/aX11 = 7.1 X 10-3, l“x3/aX11 = 3.O X 10-2,

174/aX11= 1.3x 10-5, and a,, =aX2= ay3= aX4=0. For the
first higher order mode, on the contrary, lax2/aY1j = 2.6,

lY3/%11 ‘8”6X lf--3~ lax4/%11 ‘2”5 x 10-3J and %1 ‘%’
= aX3= ay4= O. These results as well as those in Table I

show that retaining only one term (N= 1) is sufficient for

the dominant mode, while two terms (N= 2) are necessary

for the first higher order mode.

Fig. 3 shows the dispersion characteristics of slot line,

where the normalized propagation constants for the domi-
nant and the first higher order mode are reported. In the

computations, the first two basis functions (N= 2) are

used for both the dominant and first higher order mode.

The numerical data are compared with the results of Cohn

[1], and the agreement is quite good.

Figs. 4 and 5 show the effect of the metal-coating

thickness on the propagation constant and the characteris-

tic impedance, respectively. The definition for characteris-

tic impedance is not uniquely specified due to the propa-

gation of the hybrid mode. The definition chosen here is

Zo=g
ave

(26)
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TABLE I

PROPAGATIONCONSTANT&Ja~ (N=THs NUMBEROF
BASISFUNCITONS)

N Dominant mode First higher-

order mode

1 2.2777

2 2.2777 1.6829

3 I 2.2776 I 1.6S29

S==9.6, h ..1 (mm), W=l (mm), f = 25 (GE=)

DOMINANT MODE

FIRST HIGHER-

OROER MODE

10 20 30 40

f(GHz)

Fig. 3. Normalized propagation constant for the dominant and first
ltkher order mode in slot fine: e= 9.6. h = 1 hzni}, W= 1 @uzO, t =0.
S&d line represents present rnethd and’ broken line- represents

Cohn’s method [1].

where VO is the peak voltage defined by

w/2 –

Vo= +
{J

Ea”xodx +
J

“2 Eb.xodx
)

(27)
– w/2 – w/2

and Pave is the average power flow along they direction,

The first term of the basis functions is retained in these

computations (N= 1), therefore results for only the domin-

ant mode are presented. In this case 1~ 1/ aX1I = O, there-

fore, the determinantal equation (24) becomes identical
with in [3, eq. 14] and Fig. 4 here is the same as in [3, fig.

2]. It is noted that the effect of the thickness of the metal

coating is the decrease in the propagation constant and

the characteristic impedance.

The typical computation time is about 16 s for the zero

thickness (N= 2) and about 10 s for the finite-thickness

3.

2.

2.

2.

.

c~=20.0

w=o.5 (mm)

h=l.O (mm)

f~
“. t /w=o,04

/ \tlw.o.lo

L 4 6 8 10

f(GHz)

Fig. 4. Normalized propagation constant.

I E,=20.O

W= 0.5 (mm)

“-’(mm-
75

70

65
0

2

60 4

1’ “-t/w= o.lo

‘
2 .4 6 s 10 }2 14

f(GHz)

Fig. 5. Characteristic impedanee.

(N= 1) using the electronic computer FACOM 230-75.

391

V. CONCLUSIONS

This paper described a hybrid mode analysis of the slot

line. The formulation uses the network analytical methods

of electromagnetic fields and numerical procedure is

based on Galerkin’s method. The propagation constants
for the dominant and first higher order mode as well as

the effect of the metal-coating thickness on the propaga-

tion constant and the characteristic impedance are com-

puted. It is found that the rapid convergence is obtained

because of the application of Galerkin’s method and the

adequate choice of the basis functions. Numerical results
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obtained for the dominant mode have been compared

with other available data and are in good agreement. This

method itself is general and applicable to a number of

other structures, e.g., microstrip and coplanar waveguide.

Further results will be reported in near future.

*PENDIX

Green’s functions T?) and Y$~ are given by

Tf])(a; zlt)=e–””(z–’)

Y\lJ(a; zlt) =y$])e–Ko(z-f)

‘$’)(a.;zlz’)=‘i~if~jz”
n

Yp(an; Zlz’) = *y[’)
cosh fCn(Z – Z’)

z@zf

sinh K.t ‘

.~jl)

Cos K(z + h) +J —sinK(z + h)~[3)

Tf3)(a; Zlo) = .Y$l)

COSfch+J — sin Kh
~[3)

. ~f3)

COSK(Z + h) +~ —sinK(z + h)
~fl)

Yp(a; Zlo) = –yp
.Yp

cos Kh +J — Sh2 tih
~j3)

where

[1]

[2]

[3]

[4]

[5]

[6]

[7]
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